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Abstract — This paper deals in the integration of
additive and nonlinear distortion noise contributions into a
single new figure of merit: Noise and Distortion Figure,
NDF, In the same way as traditional noise figure, NF, was
conceived to be a measure of SNR degradation, NDF is now
proposed as its extension to nonlinear systems, as a measure
of SINAD degradation. NDF definition is discussed and its
application to SINAD evaluations in systems of practical
interest to the wireless community is exemplified.

[. INTRODUCTION

The Noise Figure (WF), is an important figure of merit
for designing low-noise systems. Its only drawback is that
its validity is restricted to linear systems. Actually, real
systems are not linear, and so their nonlinear distortion
characteristics should also be incorporated in any high
dynamic range design. The traditional approach consists
in aiso taking, distortion figures as IP3, although in a
separate way. Beyond their separate treatment of additive
noise, these nonlinear distortion standards were measured
using one or two tone test signals, and this kind of signals
does not give a complete set of all possible nonlinear
distortion effects. Although some work have already been
done in this respect [1], it lacks generality as, again, only
a single tone was used [2]

This paper proposes Noise and Distortion Figure, a new
Figure of Merit that simultaneously handles additive
noise and nonlinear distortion noise, identifying how
these two perturbations will combine to affect the signal
processed by the nonlinear system. The differences
between Signal to Noise Ratio, SVR, and Signal to Noise
and Distortion Ratio, SINAD, are pointed out first, and
then an appropriate Noise and Distortion Figure of merit
is defined accordingly. Finally, some simulations are
made to exemplify its application and usefulness.

II. SIGNAL TO NOISE RATIO VERSUS SIGNAL TO NOISE AND
DISTORTION RATIO.

It is usual, during the design of a RF system, to have it
characterized in terms of noise via the Noise Figure,
which gives 2 good measure of the addictive noise impact

on a signal passed through that system. It is well known
the straightforward relation between NF and Signal to
Noise Ratio (SMR), defined as the ratio of signal power to
noise power. NF is frequently referred has the ratio
between input and output SNRs, although the formal
definition of NF is:

GN,+ N,
GN,

a

NF = ()

where, ¥, and N, are output available noise power
spectral densities at a given source noise temperature, as
seen if the system were noise free, and the system’s added
noise, respectively.

In a nonlinear system the approach described above is
incomplete because the distortion noise produced by the
nonlinearity (distortion components that have a stochastic
behavior relative to the signal) is not taken in account.
Another common figure of merit, which is more useful in
the context of nonlinear systems is Signal to Noise and
Distortion Ratio (S/NAD) which is defined, according to
[3], as the ratio of signal power density, to neise and
distortion power densities, which can be written as:

S(w)
N(w)+ D(w)

where §, N and D, are respectively the Signal, additive
Noise and Distortion power spectral densities. Since that
the output distortion depends on the load, delivered power
and not available power must be considered. Therefore
hereinafter, power refers to power delivered to the load.

In order to evaluate and compare these two figures of
merit consider a nonlinear system excited by an input, x
composed of a signal s and noise », the SINAD, can be
calculated if we are able to evaluate the nonlinear output
components. These compoenents can be separated using a
consequence of Price’s Theorem [4], as was previously
presented by Rowe [5], which stated that, for a
memoryless nonlinearity £(-), with input x, the cutput
z=h(x), can be decomposed in

z(t)=a - x(r)+ (1) 3)

Where y(f) is uncorrelated with x(f), and has two
distinct components, the addictive noise introduced by the

SINAD,, (@)= @
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system and the produced nonlinear distortion. The origin
of these two components is physically distinet so they are
uncorrelated with each other and so they add in power.
According to this formulation we have found our output
signal component: a.x(f), that is, we considered as signal
every component that can be obtained by a gain factor
from the input signal. The value a, is also calculated in
[5], and can be interpreted as a cross-correlation of the
output with the input signal. With all these statements we
can write the SINAD,.

2 -
SINAD, () = a’-5(e)

o’ - N,(w)+ N, + IMD(w)

In this expression S, and ; stand for the input signal
and input noise power spectral densities respectively, a® is
the equivalent linear power gain of the system, N, the
power density of addictive noise and IMD the power
density of stochastic nonlinear Intermodulation
Distortion.

@)

II1. — NOISE AND DISTORTION FIGURE.

It was already referred above that NF can represent the
ratio of the input SNR (SNR;) to the output SNR (SNR,). If
the same ratio is evaluated using SINAD, a figure
identical to NF will be found except that it will now also
include the distortion impact. Accordingly, we will call it
Noise & Distortion Figure (NDF):

Sile)
_ SINAD, () _ N @)
NDF®) = oD, (0) a* -5 (0)

a® N+ N, + IMD{w)
at N(w)+ N, + IMD(w)
a’- Ni(m)

G)

In (5) it can be seen that NDF does not depend only on
the linear gain but also on the distortion produced. The
main advantage of this new definition is that it allows
simultaneous study of noise and distortion. This new
figure of merit can be used without many effort compared
with the usual NF desigus.

Let us know obtain NDF for a typical third order
polynomial nonlinearity, with Gaussian random inputs. [t
is already well known that the response of a polynomial
nonlincarity similar to the one represented in Fig. 1 can
be easily calculated [6].

203 -
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o x(t)+ e, x(tf +ox(t

Fig. 1 The nonlinear model used.

The input signal considered in this case is composed of
two independent Gaussian variables: one representing an
arbitrary modulated signal, and another one representing
the noise, as indicated in {6), where s(¢) and n(?) , stands
for the signal and noise components respectively.

*le) =sle) ) ©)

Applying this signal to the nonlinearity represented in
Fig. 1 will lead us two the output signal y(1):

=01 (s0)+ n(0)) + o, (s(e) + e} + , (s6)+ e} ()

Since when using random signals we must represent
them with its autocorrelation function, we assume that,
the input signal x(¢}, has an autocorrelation function
Ru(t) = R {t¥+R.,(t). This is due to the uncorrelated
behavior of n and s.

Using the result [6], which states that the output
autocorrelation of a Gaussian signal passed through a
third degree nonlinearity is given by:

R, (t)=a’R_ (0] +[o? + e, R, (0)+9a2R_ (0) ]
: ; (8
R [t)+20?R_(z) +6a:R ()
In the frequency domain:
S, {w) = a}(R,(0)+ R,,(0)) 5(w)
+le + 30, (R, (0)+ R, (O - (5., () + S, ()
+2a2ls (0)* 5 {0)+S,.(0)* S, [0)+25, (0)*5,_ ()]
+6ai[S,, (@) * S, (w)* S (@)+ S, (@) S, (@)*S,.(0)
+3-8,.(@)*S ( xS, (@) +3-5,,(@)* S, (w)* S, (@)]
®

In this expression it can be seen that there is a
component of the input signal and noise that emerges at
the output simply affected by a gain factor which depends
on aj, a3 and on the total input power. Note that the
second order components appear clearly out of band: one
component is DC and the other component is at the
second harmonic zone. The extra perturbation to the
signal is produced by the third order component which
combines to appear at the fundamental output zone and at
the third harmonic zone.

For a particular case of the input, where the signals are
flat over a bandwidth B, with power F; and P,.

s, ()= P/2B, -0,<05-0,,0, <0O<®,
0 Jelsewhere

5., (@)= P28, -0, <02-0,,0, <OS®,
0 ,elsewhere

(10$)
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lo, +30, (2, + 2)F B

SINAD, (@) = S . (12)
o, +3e,(P+ P} }%B+6af(— o’ +(w, +mH)cu+—2——wLwHJ'3'(P’ +P‘%3: +N,
2 3
[o, +3c,(P +P )P, +%af(—mz + (o, +mH)m+%——wLmH ](PJ +P"%z +N,
NDF(w) = (13)

lon +30, (P, + R P,

The output power spectral density in the fundamental
zone may be written as:

§,() =l +6a,a, (P, +B)+90(P.+ B} (7 + P, )28
2
+6ot§[—m2 +(w, +ca,,)a)+BTAwLaJhr

(B v3mn, 13 R
3B’
an

Separating the signal and non-signal components in
{11}, and taking the effect of additive noise, the output
SINAD in band can be obtained as depicted in expression
(12).

Using, expression (5) and (12}, NDF in band for this
case is presented as expression (13), where we can see
that the NDF assumes a parabolic pattern inside the band.
That is due to the triple convolution of the bandpass
signal used in this example.

IV.PRACTICAL EXAMPLES

In order to exemplify some of these theoretical results, the
NDF of a simple system, as the one of Figure 2 was
simulated, and the results compared with the theoretical
formulae developed above.

On Figure 2, to obtain the input for the Non Linear
Function, NLF, a bandpass Gaussian signal is generated,
and added to bandpass noise in order to obtain the given
SNR;. The power of this sum, signal and noise, is then
adjusted in order to test the NLF in different zones. The
noise contribution is then added to the NLF’s output, and
the cross-correlation of the output and input calculated to
find the NLF equivalent linear gain. The linear output
signal and noise due to the input is calculated via a linear
amplifier, and these two components subtracted from the
output to find the nonlinear distortion and additive noise.

The power densities of the three components are
measured in the mid band, and SINAD, calculated.

Simulation results of NDF of three interesting variants of
the system are shown in Fig. 3, along with the
theoretically predicted NDF' by expression (13). These
correspond to NDF dependence on total input power for 1
- Linear system; 2 - Nonlinear system with gain
compression {polynomial coefficients [1 0 -0.01]) and 3 -
Nonlinear system presenting a gain  expansion
(polynomial coefficients [1 G 0.01]). The noise power
density used was N,=10"WHz"'. The SINAD; 30 dB, and
input power (signal plus noise} as indicated in the figures.

Additive Noise |
(noise seed 3) |

Input Signat
(noise seed 2}

Noise Signal |
(nolge ased 1)
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Cutput Lineay

Notss Power |
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Fig. 2.  Block Diagram of the simulator used to evaluate NDF.
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Fig.3  Comparison of expression 12 and simulation results.
a)Linear System. b} Nonlinear system with gain expansion
expansion. ¢) Nonlinear system with gain compression,

Fig. 3 shows a good agreement between the simulations
made and the theoretical predictions. It should be noted
that in Fig. 3-a), the linear case, the curve for NDF is
identical to the usual NF curve as was expected from the
definition of (5).

V. CONCLUSIONS

A new figure of merit was propesed to integrate noise
and distortion impact on the degradation of signal quality.
Besides being defined for the general case, it was then
calculated for the particular example of a memoryless non
linearity. Good results have been found when comparing
the predictions given by the theoretical expression with
the simulation results,
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